Crack and indentation problems for one-dimensional hexagonal quasicrystals

Y.Z. Peng ${ }^{\mathrm{a}}$ and T.Y. Fan
Department of Physics, School of Science and Technology, Beijing Institute of Technology, PO Box 327, Beijing 100081, PR China

Received 6 October 2000

Abstract

In this paper we develop a general method to solve elastic three-dimensional problems for onedimensional hexagonal quasicrystals with point groups $6 \mathrm{~mm}, 62_{\mathrm{h}} 2_{\mathrm{h}}, \overline{6} \mathrm{~m} 2_{\mathrm{h}}$ and $6 / \mathrm{mmm}$, including crack and indentation problems. Exact solutions are obtained by using Fourier series and Hankel transform methods. These results automatically reduce to those in the classical elasticity theory when the phason field is absent.

PACS. 61.44. Br Quasicrystals

1 Introduction

Quasicrystals (QCs)(solids with a long-range orientational order and a long-range quasiperiodic translational order [1]) have become the focus of theoretical and experimental studies in the physics of condensed matter since the first discovery of the icosahedral QC in Al-Mn alloys [2]. Based on Landau theory, QC elasticity theory was formulated [3-6]. Recently, a generalized Hooke's law of one-dimensional (1D) QCs has been derived by Wang et al. [7]. It provides us with a fundamental theory based on the notion of a continuum model to describe the elastic behavior of 1D QCs. As in conventional crystals, many structural defects such as dislocations and cracks have already been observed experimentally in QCs $[8,9]$. According to these theories and experiments, some elastic problems, mainly dislocations and cracks, have been widely considered [10-15]. Due to the introduction of the phason field, the elastic equations for QCs are much more complicated than those in classical elasticity theory (CET). So most authors consider only elastic plane or antiplane problems for QCs [10-14].

In an earlier paper [15], we proposed a perturbation method to solve elastic three-dimensional (3D) problems for icosahedral QCs, regarding the phason field as a perturbation to the phonon field. And it works very well. In this paper, we develop a general method to solve elastic 3D problems for 1D hexagonal QCs with point groups 6 mm , $62_{\mathrm{h}} 2_{\mathrm{h}}, \overline{6} \mathrm{~m} 2_{\mathrm{h}}$ and $6 / \mathrm{mmm}$, including crack and indentation problems.

[^0]We first develop briefly the general method of solution by use of Fourier series and Hankel transforms and then use this for solutions satisfying the boundary conditions of our problems. First, we solve the problem of a circular crack in an infinite medium under arbitrary normal load. Secondly, we solve the problems where a 1D hexagonal QC of point group 6 mm is indented by a rigid punch. The results obtained in this paper automatically reduce to those in CET when the phason field is absent.

2 The basic equations and general solutions

According to 1D QC elasticity theory [7], strain- and stress-displacement relations for 1D hexagonal QCs with point groups $6 \mathrm{~mm}, 62_{\mathrm{h}} 2_{\mathrm{h}}, \overline{6} \mathrm{~m} 2_{\mathrm{h}}$ and $6 / \mathrm{mmm}$, respectively, are

$$
\begin{align*}
\varepsilon_{i j} & =\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right) / 2, \quad w_{i j}=\partial_{j} w_{i} \\
\sigma_{x x} & =c_{11} \partial_{x} u_{x}+\left(c_{11}-2 c_{66}\right) \partial_{y} u_{y}+c_{13} \partial_{z} u_{z}+R_{1} \partial_{z} w_{z} \\
\sigma_{y y} & =\left(c_{11}-2 c_{66}\right) \partial_{x} u_{x}+c_{11} \partial_{y} u_{y}+c_{13} \partial_{z} u_{z}+R_{1} \partial_{z} w_{z} \\
\sigma_{z z} & =c_{13} \partial_{x} u_{x}+c_{13} \partial_{y} u_{y}+c_{33} \partial_{z} u_{z}+R_{2} \partial_{z} w_{z} \\
\sigma_{y z} & =\sigma_{z y}=c_{44}\left(\partial_{y} u_{z}+\partial_{z} u_{y}\right)+R_{3} \partial_{y} w_{z} \\
\sigma_{z x} & =\sigma_{x z}=c_{44}\left(\partial_{x} u_{z}+\partial_{z} u_{x}\right)+R_{3} \partial_{x} w_{z} \\
\sigma_{x y} & =\sigma_{y x}=c_{66}\left(\partial_{x} u_{y}+\partial_{y} u_{x}\right) \\
H_{z z} & =R_{1}\left(\partial_{x} u_{x}+\partial_{y} u_{y}\right)+R_{2} \partial_{z} u_{z}+K_{1} \partial_{z} w_{z} \\
H_{z x} & =R_{3}\left(\partial_{x} u_{z}+\partial_{z} u_{x}\right)+K_{2} \partial_{x} w_{z} \\
H_{z y} & =R_{3}\left(\partial_{y} u_{z}+\partial_{z} u_{y}\right)+K_{2} \partial_{y} w_{z} . \tag{1}
\end{align*}
$$

The equilibrium equations in terms of displacements, in the absence of body forces, are

$$
\left.\begin{array}{l}
\left(c_{11} \partial_{x}^{2}+c_{66} \partial_{y}^{2}+c_{44} \partial_{z}^{2}\right) u_{x}+\left(c_{11}-c_{66}\right) \partial_{x} \partial_{y} u_{y} \\
\quad+\left(c_{13}+c_{44}\right) \partial_{x} \partial_{z} u_{z}+\left(R_{1}+R_{3}\right) \partial_{x} \partial_{z} w_{z}=0 \\
\left(c_{11}\right.
\end{array}\right)
$$

$$
\left(c_{13}+c_{44}\right)\left(\partial_{x} \partial_{z} u_{x}+\partial_{y} \partial_{z} u_{y}\right)+\left(c_{44} \partial_{x}^{2}+c_{44} \partial_{y}^{2}+c_{33} \partial_{z}^{2}\right) u_{z}
$$

$$
+\left[R_{3}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)+R_{2} \partial_{z}^{2}\right] w_{z}=0
$$

$$
\left(R_{1}+R_{3}\right)\left(\partial_{x} \partial_{z} u_{x}+\partial_{y} \partial_{z} u_{y}\right)+\left[R_{3}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)+R_{2} \partial_{z}^{2}\right] u_{z}
$$

$$
\begin{equation*}
+\left[K_{2}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)+K_{1} \partial_{z}^{2}\right] w_{z}=0 \tag{2}
\end{equation*}
$$

where the z-axis is assumed to be the quasiperiodic axis, and the $x y$-plane the periodic plane of the $\mathrm{QC}, u_{i}, w_{i}$ are phonon and phason displacements in the physical and perpendicular spaces, respectively, $\sigma_{i j}$ and $\varepsilon_{i j}$ are phonon stresses and strains, $H_{i j}$ and $w_{i j}$ are the phason stresses and strains, $c_{11}, c_{13}, c_{33}, c_{44}, c_{66}, K_{1}, K_{2}$ the elastic constants corresponding to the phonon and phason fields, and R_{1}, R_{2}, R_{3} the elastic constants of phonon-phason coupling. We should keep in mind that the subscripts i, j for $H_{i j}, w_{i j}$ can not be exchanged according to their meanings [6]. It is very important for us to write the boundary conditions correctly.

We find that equation (2), in cylindrical polar coordinates, can be satisfied by (one can directly verify it)

$$
\begin{align*}
u_{r} & =\partial_{r}\left(F_{1}+F_{2}+F_{3}\right)-1 / r \partial_{\theta} F_{4}, \\
u_{\theta} & =1 / r \partial_{\theta}\left(F_{1}+F_{2}+F_{3}\right)+\partial_{r} F_{4} \\
u_{z} & =\partial_{z}\left(m_{1} F_{1}+m_{2} F_{2}+m_{3} F_{3}\right), \\
w_{z} & =\partial_{z}\left(l_{1} F_{1}+l_{2} F_{2}+l_{3} F_{3}\right) \tag{3}
\end{align*}
$$

where the possible functions F_{i} are the solutions of

$$
\begin{equation*}
\left(\partial_{r}^{2}+1 / r \partial_{r}+1 / r^{2} \partial_{\theta}^{2}+\gamma_{i}^{2} \partial_{z}^{2}\right) F_{i}=0, \quad i=1,2,3,4 \tag{4}
\end{equation*}
$$

where the values of m_{i}, l_{i} and γ_{i} are related by the fol-
lowing expressions:

$$
\begin{align*}
& \frac{c_{44}+\left(c_{13}+c_{44}\right) m_{i}+\left(R_{1}+R_{3}\right) l_{i}}{c_{11}}= \\
& \quad \frac{c_{33} m_{i}+R_{2} l_{i}}{c_{13}+c_{44}+c_{44} m_{i}+R_{3} l_{i}} \\
& \quad=\frac{R_{2} m_{i}+K_{1} l_{i}}{R_{1}+R_{3}+R_{3} m_{i}+K_{2} l_{i}}=\gamma_{i}^{2}, \quad i=1,2,3 ; \\
& c_{44} / c_{66}=\gamma_{4}^{2} . \tag{5}
\end{align*}
$$

Note that we use γ_{i}^{2} in place of γ_{i} for convenience as in [16], and the expressions (3-5) can reduce to those obtained by Fabricant [16] and Elliott [17] for aeolotropic hexagonal crystals when the phason field is absent. Now expanding F_{i} into Fourier series, we have
$F_{i}=a_{i}^{(0)}(r, z)+\sum_{n=i}^{\infty}\left[a_{i}^{(n)}(r, z) \cos n \theta+b_{i}^{(n)}(r, z) \sin n \theta\right]$.

The substitution of (6) into (4) yields

$$
\begin{array}{ll}
\left(\partial_{r}^{2}+1 / r \partial_{r}-n^{2} / r^{2}+\gamma_{i}^{2} \partial_{z}^{2}\right) a_{i}^{(n)}=0, & n=0,1,2, \ldots \\
\left(\partial_{r}^{2}+1 / r \partial_{r}-n^{2} / r^{2}+\gamma_{i}^{2} \partial_{z}^{2}\right) b_{i}^{(n)}=0, & n=1,2,3, \ldots \tag{7}
\end{array}
$$

After the Hankel transformation to equation (7), their solutions can be expressed as

$$
\begin{align*}
a_{i}^{(n)}(r, z) & =\int_{0}^{\infty} \xi\left[A_{i}^{(n)}(\xi) \exp \left(-\xi z / \gamma_{i}\right)\right. \\
& \left.+C_{i}^{(n)}(\xi) \exp \left(\xi z / \gamma_{i}\right)\right] J_{n}(\xi r) \mathrm{d} \xi \quad n=0,1,2, \ldots \\
b_{i}^{(n)}(r, z) & =\int_{0}^{\infty} \xi\left[B_{i}^{(n)}(\xi) \exp \left(-\xi z / \gamma_{i}\right)\right. \\
& \left.+D_{i}^{(n)}(\xi) \exp \left(\xi z / \gamma_{i}\right)\right] J_{n}(\xi r) \mathrm{d} \xi . \quad n=1,2,3, \ldots \tag{8}
\end{align*}
$$

where $A_{i}^{(n)}(\xi), B_{i}^{(n)}(\xi), C_{i}^{(n)}(\xi)$ and $D_{i}^{(n)}(\xi)$ are arbitrary functions of ξ.

Thus the stress components are given by

$$
\begin{align*}
& \sigma_{r r}= {\left[c_{11} \partial_{r}^{2}+\left(c_{11}-2 c_{66}\right)\left(1 / r \partial_{r}+1 / r^{2} \partial_{\theta}^{2}\right)\right] } \\
& \times\left(F_{1}+F_{2}+F_{3}\right)+c_{13} \partial_{z}^{2}\left(m_{1} F_{1}+m_{2} F_{2}+m_{3} F_{3}\right) \\
&-2 c_{66}\left(1 / r \partial_{r} \partial_{\theta}-1 / r^{2} \partial_{\theta}\right) F_{4} \\
&+R_{1} \partial_{z}^{2}\left(l_{1} F_{1}+l_{2} F_{2}+l_{3} F_{3}\right) \\
& \sigma_{\theta \theta}= {\left[\left(c_{11}-2 c_{66}\right) \partial_{r}^{2}+c_{11}\left(1 / r \partial_{r}+1 / r^{2} \partial_{\theta}^{2}\right)\right] } \\
& \times\left(F_{1}+F_{2}+F_{3}\right)+c_{13} \partial_{z}^{2}\left(m_{1} F_{1}+m_{2} F_{2}+m_{3} F_{3}\right) \\
&+2 c_{66}\left(1 / r \partial_{r} \partial_{\theta}-1 / r^{2} \partial_{\theta}\right) F_{4} \\
&+R_{1} \partial_{z}^{2}\left(l_{1} F_{1}+l_{2} F_{2}+l_{3} F_{3}\right) \\
& \sigma_{z z}=-c_{13} \partial_{z}^{2}\left(\gamma_{1}^{2} F_{1}+\gamma_{2}^{2} F_{2}+\gamma_{3}^{2} F_{3}\right) \\
&+c_{33} \partial_{z}^{2}\left(m_{1} F_{1}+m_{2} F_{2}+m_{3} F_{3}\right) \\
&+R_{2} \partial_{z}^{2}\left(l_{1} F_{1}+l_{2} F_{2}+l_{3} F_{3}\right) \\
& \sigma_{r \theta}= \sigma_{\theta r}=2 c_{66}\left(1 / r \partial_{r} \partial_{\theta}-1 / r^{2} \partial_{\theta}\right)\left(F_{1}+F_{2}+F_{3}\right) \\
&+c_{66}\left(\partial_{r}^{2}-1 / r \partial_{r}-1 / r^{2} \partial_{\theta}^{2}\right) F_{4} \\
& \sigma_{\theta z}= \sigma_{z \theta}=c_{44} 1 / r \partial_{\theta} \partial_{z}\left[\left(m_{1}+1\right) F_{1}+\left(m_{2}+1\right) F_{2}\right. \\
&\left.+\left(m_{3}+1\right) F_{3}\right]+c_{44} \partial_{r} \partial_{z} F_{4} \\
&+R_{3} 1 / r \partial_{\theta} \partial_{z}\left(l_{1} F_{1}+l_{2} F_{2}+l_{3} F_{3}\right) \\
& \sigma_{z r}= \sigma_{r z}=c_{44} \partial_{r} \partial_{z}\left[\left(m_{1}+1\right) F_{1}+\left(m_{2}+1\right) F_{2}\right. \\
&\left.+\left(m_{3}+1\right) F_{3}\right]-c_{44} 1 / r \partial_{\theta} \partial_{z} F_{4} \\
&+R_{3} \partial_{r} \partial_{z}\left(l_{1} F_{1}+l_{2} F_{2}+l_{3} F_{3}\right) \\
& H_{z z}=-R_{1} \partial_{z}^{2}\left(\gamma_{1}^{2} F_{1}+\gamma_{2}^{2} F_{2}+\gamma_{3}^{2} F_{3}\right) \\
&+R_{2} \partial_{z}^{2}\left(m_{1} F_{1}+m_{2} F_{2}+m_{3} F_{3}\right) \\
&+K_{1} \partial_{z}^{2}\left(l_{1} F_{1}+l_{2} F_{2}+l_{3} F_{3}\right) \\
& H_{z r}= R_{3} \partial_{r} \partial_{z}\left[\left(m_{1}+1\right) F_{1}+\left(M_{2}+1\right) F_{2}+\left(m_{3}+1\right) F_{3}\right] \\
&-R_{3} 1 / r \partial_{\theta} \partial_{z} F_{4}+K_{2} \partial_{r} \partial_{z}\left(l_{1} F_{1}+l_{2} F_{2}+l_{3} F_{3}\right) \\
& H_{z \theta}= R_{3} 1 / r \partial_{\theta} \partial_{z}\left[\left(m_{1}+1\right) F_{1}+\left(m_{2}+1\right) F_{2}\right. \\
&\left.+\left(m_{3}+1\right) F_{3}\right]+R_{3} \partial_{r} \partial_{z} F_{4} \\
&+K_{2} 1 / r \partial_{\theta} \partial_{z}\left(l_{1} F_{1}+l_{2} F_{2}+l_{3} F_{3}\right) \tag{9}\\
&(9)
\end{align*}
$$

where F_{i} are expressed by (6) and (8).

3 The effect of a crack in an 1D hexagonal QC

As an application of the above theory, we consider an infinite 1 D hexagonal QC of point group 6 mm weakened by a flat circular crack with radius a in the plane $z=0$, with arbitrary loads applied normal to the crack faces. It is obvious that we consider only the half-space $z \geq 0$. Then our boundary conditions in the plane $z=0$ may be written as

$$
\begin{align*}
\sigma_{z z} & =p(r, \theta), & H_{z z} & =q(r, \theta) & 0 & <r<a \\
u_{z} & =0, & w_{z} & =0, & & r>a \\
\sigma_{z r} & =0, & \sigma_{z \theta} & =0, & & r \geq 0
\end{align*}
$$

and the boundary condition at infinity is

$$
\begin{equation*}
\sigma_{i j} \rightarrow 0, \quad H_{i j} \rightarrow 0, \quad \sqrt{r^{2}+z^{2}} \rightarrow \infty \tag{11}
\end{equation*}
$$

As a result of (11), in equation (8) we have $C_{i}^{(n)}(\xi)=$ $D_{i}^{(n)}(\xi)=0$. First we assume the load distribution is an even function of θ. Hence, the loading function $p(r, \theta)$ and $q(r, \theta)$ will be expanded in Fourier cosine series as follows

$$
\begin{equation*}
p(r, \theta)=\sum_{n=0}^{\infty} f_{n}(r) \cos n \theta, \quad q(r, \theta)=\sum_{n=0}^{\infty} g_{n}(r) \cos n \theta \tag{12}
\end{equation*}
$$

in which the Fourier coefficients are determined from

$$
\begin{array}{cl}
f_{0}(r)=\frac{1}{\pi} \int_{0}^{\pi} p(r, \theta) \mathrm{d} \theta, & f_{n}(r)=\frac{2}{\pi} \int_{0}^{\pi} p(r, \theta) \cos n \theta \mathrm{~d} \theta \\
g_{0}(r)=\frac{1}{\pi} \int_{0}^{\pi} q(r, \theta) \mathrm{d} \theta, & g_{n}(r)=\frac{2}{\pi} \int_{0}^{\pi} q(r, \theta) \cos n \theta \mathrm{~d} \theta \\
n=1,2,3, \ldots & \tag{13}
\end{array}
$$

Therefore, it follows from (6) and (8) that

$$
\begin{array}{r}
F_{i}=\sum_{n=0}^{\infty}\left[\int_{0}^{\infty} \xi A_{i}^{(n)} \exp \left(-\xi z / \gamma_{i}\right) J_{n}(\xi r) \mathrm{d} \xi\right] \cos n \theta \\
i=1,2,3,4 \tag{14}
\end{array}
$$

From $\sigma_{z \theta}=0$ for $r \geq 0$ we have $A_{4}^{(n)}(\xi)=0, n=$ $0,1,2,3 \ldots$ And from $\sigma_{z r}=0$ for $r \geq 0$ we get

$$
\begin{align*}
A_{3}^{(n)}= & -\left[\frac{R_{3} l_{1}+c_{44}\left(1+m_{1}\right)}{\gamma_{1}} A_{1}^{(n)}\right. \\
& \left.\times \frac{R_{3} l_{2}+c_{44}\left(1+m_{2}\right)}{\gamma_{2}} A_{2}^{(n)}\right] \\
& \times \frac{\gamma_{3}}{R_{3} l_{3}+c_{44}\left(1+m_{3}\right)} \quad n=0,1,2, \ldots \tag{15}
\end{align*}
$$

It follows from the rest of the boundary conditions (10) that

$$
\left.\left\{\begin{array}{ll}
\int_{0}^{\infty} \xi^{3} A_{1}^{(n)}(\xi) J_{n}(\xi r) \mathrm{d} \xi= & \tag{16}\\
& \left(c_{2} f_{n}(r)-c_{4} g_{n}(r)\right) /\left(c_{2} c_{3}-c_{1} c_{4}\right)
\end{array}\right) 0<r<a\right\}
$$

$$
\left.\left\{\begin{array}{ll}
\int_{0}^{\infty} \xi^{3} A_{2}^{(n)} J_{n}(\xi r) \mathrm{d} \xi= & \tag{17}\\
& \left(c_{1} f_{n}(r)-c_{3} g_{n}(r)\right) /\left(c_{1} c_{4}-c_{2} c_{3}\right)
\end{array}\right) 0<r<a\right\}
$$

with

$$
\begin{aligned}
& c_{i}=\frac{R_{2} m_{i}+K_{1} l_{i}-R_{1} \gamma_{i}^{2}}{\gamma_{i}^{2}} \\
& -\frac{\left[R_{3} l_{i}+c_{44}\left(1+m_{i}\right)\right]\left[R_{2} m_{3}+K_{1} l_{3}-R_{1} \gamma_{3}^{2}\right]}{\gamma_{i} \gamma_{3}\left[R_{3} l_{3}+c_{44}\left(1+m_{3}\right)\right]}, i=1,2 \\
& c_{j+2}=\frac{c_{33} m_{j}+R_{2} l_{j}-c_{13} \gamma_{j}^{2}}{\gamma_{j}^{2}} \\
& -\frac{\left[R_{3} l_{j}+c_{44}\left(1+m_{j}\right)\right]\left[c_{33} m_{3}+R_{2} l_{3}-c_{13} \gamma_{3}^{2}\right]}{\gamma_{j} \gamma_{3}\left[R_{3} l_{3}+c_{44}\left(1+m_{3}\right)\right]}, j=1,2 .
\end{aligned}
$$

According to the theory of dual integral equations [18, 19], we get from equations (16) and (17) that

$$
\begin{aligned}
A_{1}^{(n)}(\xi)= & \sqrt{\frac{2}{\pi}} \frac{\xi^{-3 / 2}}{c_{2} c_{3}-c_{1} c_{4}} \\
& \times \int_{0}^{a} J_{n+1 / 2}(\xi \eta) \eta^{-n+1 / 2} \mathrm{~d} \eta \\
& \times \int_{0}^{n} \frac{r^{n+1}\left(c_{2} f_{n}(r)-c_{4} g_{n}(r)\right)}{\left(\eta^{2}-r^{2}\right)^{1 / 2}} \mathrm{~d} r \\
A_{2}^{(n)}(\xi)= & \sqrt{\frac{2}{\pi}} \frac{\xi^{-3 / 2}}{c_{1} c_{4}-c_{2} c_{3}} \\
& \times \int_{0}^{a} J_{n+1 / 2}(\xi \eta) \eta^{-n+1 / 2} \mathrm{~d} \eta \\
& \times \int_{0}^{n} \frac{r^{n+1}\left(c_{1} f_{n}(r)-c_{3} g_{n}(r)\right)}{\left(\eta^{2}-r^{2}\right)^{1 / 2}} \mathrm{~d} r .
\end{aligned}
$$

Thus the solutions $F_{i}(14)$ satisfying the boundary conditions (10) and (11) are found. Substituting the expressions of F_{i} into equations (3) and (9) we obtain the elastic fields of the whole QC. Because they are elementary, but very tedious, we omit them.

When the load distribution is an odd function of θ, the same procedure can be applied by changing the cosine functions into the sine functions in equations (12). The resulting F_{i} formulae are the same as (14) except that $\cos n \theta$ is replaced by $\sin n \theta$. The superposition of the two results for F_{i} accounts for symmetrical loadings that are both even and odd in θ.

4 General solutions for indentation problems

If the problem of interest is independent of the variable θ, equations (4) read

$$
\begin{equation*}
\left(\partial_{r}^{2}+1 / r \partial_{r}+\gamma_{i}^{2} \partial_{z}^{2}\right) F_{i}=0, \quad i=1,2,3,4 \tag{18}
\end{equation*}
$$

By means of Hankel transform, it is easy to find that the solutions of equation (18) can be expressed as

$$
\begin{equation*}
F_{i}(r, z)=\int_{0}^{\infty} \xi G_{i}(\xi, z) J_{0}(\xi r) \mathrm{d} \xi, \quad i=1,2,3,4 \tag{19}
\end{equation*}
$$

where

$$
G_{i}(\xi, z)=A_{i}(\xi) \exp \left(-\xi z / \gamma_{i}\right)+B_{i}(\xi) \exp \left(\xi z / \gamma_{i}\right)
$$

where $A_{i}(\xi)$ and $B_{i}(\xi)$ are arbitrary functions of ξ.
Using the formulae (3) and (9), we have the following expressions for the displacements and stresses

$$
\begin{align*}
& u_{r}=-\int_{0}^{\infty} \xi^{2}\left(G_{1}+G_{2}+G_{3}\right) J_{1}(\xi r) \mathrm{d} \xi \\
& u_{\theta}=-\int_{0}^{\infty} \xi^{2} G_{4} J_{1}(\xi r) \mathrm{d} \xi \\
& u_{z}= \int_{0}^{\infty} \xi\left(l_{1} \partial_{z} G_{1}+l_{2} \partial_{z} G_{2}+l_{3} \partial_{z} G_{3}\right) J_{0}(\xi r) \mathrm{d} \xi \\
& w_{z}= \int_{0}^{\infty} \xi\left(m_{1} \partial_{z} G_{1}+m_{2} \partial_{z} G_{2}+m_{3} \partial_{z} G_{3}\right) J_{0}(\xi r) \mathrm{d} \xi \\
& \sigma_{r r}= \sum_{i=1}^{3}\left(-c_{11} \gamma_{i}^{2}+c_{13} m_{i}+R_{1} l_{i}\right) \int_{0}^{\infty} \xi \partial_{z}^{2} G_{i} J_{0}(\xi r) \mathrm{d} \xi \\
&+2 c_{66} \sum_{i=1}^{3} \int_{0}^{\infty} \xi^{2} G_{i} J_{1}(\xi r) / r \mathrm{~d} \xi \\
& \sigma_{\theta \theta}= \sum_{i=1}^{3}\left(-c_{11} \gamma_{i}^{2}+c_{13} m_{i}+R_{1} l_{i}\right) \int_{0}^{\infty} \xi \partial_{z}^{2} G_{i} J_{0}(\xi r) \mathrm{d} \xi \\
&+2 c_{66} \sum_{i=1}^{3} \int_{0}^{\infty} \xi^{3} G_{i}\left[J_{0}(\xi r)-J_{1}(\xi r) /(\xi r)\right] \mathrm{d} \xi \\
& \sigma_{z z}= \sum_{i=1}^{3}\left(-c_{13} \gamma_{i}^{2}+c_{33} m_{i}+R_{2} l_{i}\right) \int_{0}^{\infty} \xi \partial_{z}^{2} G_{i} J_{0}(\xi r) \mathrm{d} \xi \\
& \sigma_{r \theta}= \sigma_{\theta r}=c_{66} \int_{0}^{\infty} \xi^{2} G_{4}\left[-\xi J_{0}(\xi r)+2 J_{1}(\xi r) / r\right] \mathrm{d} \xi \\
& \sigma_{z \theta}= \sigma_{\theta z}=-c_{44} \int_{0}^{\infty} \xi^{2} \partial_{z} G_{4} J_{1}(\xi r) \mathrm{d} \xi \tag{20}\\
& H_{z r}=-\sum_{i=1}^{3}\left[R_{3}\left(1+m_{i}\right)+K_{2} l_{i}\right] \int_{0}^{\infty} \xi^{2} \partial_{z} G_{i} J_{1}(\xi r) \mathrm{d} \xi \\
& H_{z \theta}=-R_{r}=-\sum_{i=1}^{3}\left[c_{44}\left(1+m_{i}\right)+R_{3} l_{i}\right] \int_{0}^{2} \partial_{z} G_{4} J_{1}(\xi r) \mathrm{d} \xi \\
& H_{z z}^{2} \partial_{z} G_{i} J_{1}(\xi r) \mathrm{d} \xi \\
& H_{0} \sum_{i=1}^{3}\left(-R_{1} \gamma_{i}^{2}+R_{2} m_{i}+K_{1} l_{i}\right) \int_{0}^{\infty} \xi \partial_{z}^{2} G_{i} J_{0}(\xi r) \mathrm{d} \xi
\end{align*}
$$

From here we see that the stress components $\sigma_{r \theta}, \sigma_{z \theta}$ and displacement component u_{θ} are in general non-zero (except in a special case $G_{4} \equiv 0$) even though the problem of interest is independent of θ, which is quite different from the counterpart in CET. But, when the phason field is absent, the formulae (20) automatically reduce to those in CET [17].

As an example of application of the above theory, we now formulate our boundary values at the free surface $z=0$, which is to be punched. The shape of the punch
must be axial symmetric, and we assume that it is known as a function of r. Then over a circle of radius a the punch will be in contact with the material, and outside that area the surface will be free. We also assume perfect lubrication between the punch and the material so that no shear stresses are set up. It is obvious that we consider only the half-space $z \geq 0$.

Then our boundary conditions in the plane $z=0$ are

$$
\begin{align*}
u_{z} & =w(r), & w_{z} & =0, & & 0 \leq r \leq a \\
\sigma_{z z} & =0, & H_{z z} & =0 & & r>a \\
\sigma_{z r} & =0, & \sigma_{z \theta} & =0, & & r \geq 0 \tag{21}
\end{align*}
$$

and the boundary condition at infinity is

$$
\begin{equation*}
\sigma_{i j} \rightarrow 0, \quad H_{i j} \rightarrow 0, \quad \sqrt{r^{2}+z^{2}} \rightarrow \infty \tag{22}
\end{equation*}
$$

where $w(r)$ is determined by the shape of the punch. It follows from (22) that $B_{i}(\xi)=0$ for $i=1,2,3,4$. And from $\sigma_{z \theta}=0$ for $r \geq 0$ we have $G_{4}=0$. $\sigma_{z r}=0$ for $r \geq 0$ means that

$$
\begin{align*}
A_{3}= & -\left[\frac{R_{3} l_{1}+c_{44}\left(1+m_{1}\right)}{\gamma_{1}} A_{1}+\frac{R_{3} l_{2}+c_{44}\left(1+m_{2}\right)}{\gamma_{2}} A_{2}\right] \\
& \times \frac{\gamma_{3}}{R_{3} l_{3}+c_{44}\left(1+m_{3}\right)} \\
\equiv & a_{1} A_{1}+a_{2} A_{2} \tag{23}
\end{align*}
$$

According to the rest of the boundary conditions (21), we get

$$
\begin{cases}\int_{0}^{\infty} \xi^{2} A_{1}(\xi) J_{0}(\xi r) \mathrm{d} \xi=-c_{4} w(r) /\left(c_{1} c_{4}-c_{2} c_{3}\right) & \tag{24}\\ & 0<r<a \\ \int_{0}^{\infty} \xi^{3} A_{1}(\xi) J_{0}(\xi r) \mathrm{d} \xi=0 & r>a\end{cases}
$$

$$
\begin{cases}\int_{0}^{\infty} \xi^{2} A_{2}(\xi) J_{0}(\xi r) \mathrm{d} \xi=c_{3} w(r) /\left(c_{1} c_{4}-c_{2} c_{3}\right) & \tag{25}\\ & 0<r<a \\ \int_{0}^{\infty} \xi^{3} A_{2}(\xi) J_{0}(\xi r) \mathrm{d} \xi=0 & r>a\end{cases}
$$

with

$$
c_{i}=\frac{l_{i}}{\gamma_{i}}+\frac{l_{3}}{\gamma_{3}} a_{i}, \quad c_{i+2}=\frac{m_{i}}{\gamma_{i}}+\frac{m_{3}}{\gamma_{3}} a_{i}, \quad i=1,2
$$

According to the theory of dual integral equations $[18,19]$, the solutions of equations (24) and (25) read

$$
\begin{align*}
A_{1}(\xi)= & -\frac{c_{4}}{c_{1} c_{4}-c_{2} c_{3}}\left[\frac{2}{\pi a^{2}} \xi^{-2} \cos a \xi\right. \\
& \times \int_{0}^{1} y\left(1-y^{2}\right)^{-1 / 2} w(y) \mathrm{d} y \\
& +\frac{2}{\pi a} \xi^{-1} \int_{0}^{1} y\left(1-y^{2}\right)^{-1 / 2} \mathrm{~d} y \\
& \left.\times \int_{0}^{1} w(y u) u \sin a \xi u \mathrm{~d} u\right] \tag{26}\\
A_{2}(\xi)= & \frac{c_{3}}{c_{1} c_{4}-c_{2} c_{3}}\left[\frac{2}{\pi a^{2}} \xi^{-2} \cos a \xi\right. \\
& \times \int_{0}^{1} y\left(1-y^{2}\right)^{-1 / 2} w(y) \mathrm{d} y \\
& +\frac{2}{\pi a} \xi^{-1} \int_{0}^{1} y\left(1-y^{2}\right)^{-1 / 2} \mathrm{~d} y \\
& \left.\times \int_{0}^{1} w(y u) u \sin a \xi u \mathrm{~d} u\right] \tag{27}
\end{align*}
$$

We will now apply this analysis to a special case, that is indentation by a circular cylindrical punch. In this problem we have

$$
[w(r)]_{z=0}=\varepsilon, \quad 0 \leq r \leq a
$$

and $(26,27)$ then give

$$
\begin{align*}
& A_{1}(\xi)=-\frac{2 c_{4} \varepsilon}{\pi\left(c_{1} c_{4}-c_{2} c_{3}\right) a^{3}} \xi^{-3} \sin a \xi \\
& A_{2}(\xi)=\frac{2 c_{3} \varepsilon}{\pi\left(c_{1} c_{4}-c_{2} c_{3}\right) a^{3}} \xi^{-3} \sin a \xi \tag{28}
\end{align*}
$$

From (19) and (20), we can calculate the elastic field of the whole problem. But we will not give it because of the limitations of space.

5 Conclusions

A general method for solving elastic 3D problems of 1D hexagonal QCs with point groups $6 \mathrm{~mm}, 62_{\mathrm{h}} 2_{\mathrm{h}}, \overline{6} \mathrm{~m} 2_{\mathrm{h}}$ and $6 / \mathrm{mmm}$ is developed. We have found the exact solutions for a material containing a circular crack under arbitrary normal load. Solutions are also found for problems of indentation of an 1D hexagonal QC by a rigid punch. And these results reduce automatically to the counterpart in CET when the phason field is absent.

This work is supported by the National Natural Science Foundation of China.

References

1. D. Levine, P.J. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984).
2. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).
3. P. Bak, Phys. Rev. Lett. 54, 1517 (1985).
4. D. Levine, T.C. Lubensky, S. Ostlund et al., Phys. Rev. Lett. 54, 1520 (1985).
5. J.E.S. Socolar, T.C. Lubensky, P.J. Steinhardt, Phys. Rev. B 34, 3345 (1986).
6. D.H. Ding, W.G. Yang, C.Z. Hu, R.H. Wang, Phys. Rev. B 48, 7003 (1993).
7. R.H. Wang, W.G. Yang, C.Z. Hu, D.H. Ding, J. Phys. Cond. Matt. 9, 2411 (1997).
8. M.X. Dai, K. Urban, Phil. Mag. Lett. 67, 67 (1993).
9. P. Ebert, M. Fenerbacher, N. Tamura, M. Wollgarten, K. Urban, Phys. Rev. Lett. 77, 3827 (1996).
10. P. De, R.A. Pelcovits, Phys. Rev. B 35, 8609 (1987); 36, 9304 (1987).
11. D.H. Ding, R.H. Wang, W.G. Yang, C.Z. Hu, J. Phys. Cond. Matt. 7, 5423 (1995).
12. W.G. Yang, M. Feuerbacher, N. Tamura et al., Phil. Mag. A 77, 1481 (1998).
13. T.Y. Fan, X.F. Li, Y.F. Sun, Acta. Physica Sinica (Overseas Edition), 8, 288 (1999).
14. T.Y. Fan, Mathematical Theory of Elasticity of Quasicrystals and Its Applications, (Beijing Institute of Technology Press, Beijing, 1999) (in Chinese).
15. Y.Z. Peng, T.Y. Fan, Chin. Phys. 9, 764 (2000).
16. V.I. Fabrikant, B.S. Rubin, E.N. Karapetian, ASME J. Appl. Mech. 61, 809 (1994).
17. H.A. Elliott, Proc. Camb. Phil. Soc. 44, 522 (1948).
18. E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals (Oxford, New York, 1937).
19. I.W. Busbridge, Proc. London Math. Soc. 44, 114 (1938).

[^0]: a e-mail: sdwxl@263.net

