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Abstract. In this paper we develop a general method to solve elastic three-dimensional problems for one-
dimensional hexagonal quasicrystals with point groups 6mm, 62h2h, 6̄m2h and 6/mmm, including crack
and indentation problems. Exact solutions are obtained by using Fourier series and Hankel transform
methods. These results automatically reduce to those in the classical elasticity theory when the phason
field is absent.

PACS. 61.44. Br Quasicrystals

1 Introduction

Quasicrystals (QCs)(solids with a long-range orientational
order and a long-range quasiperiodic translational or-
der [1]) have become the focus of theoretical and experi-
mental studies in the physics of condensed matter since
the first discovery of the icosahedral QC in Al-Mn al-
loys [2]. Based on Landau theory, QC elasticity theory
was formulated [3–6]. Recently, a generalized Hooke’s law
of one-dimensional (1D) QCs has been derived by Wang
et al. [7]. It provides us with a fundamental theory based
on the notion of a continuum model to describe the elas-
tic behavior of 1D QCs. As in conventional crystals, many
structural defects such as dislocations and cracks have al-
ready been observed experimentally in QCs [8,9]. Accord-
ing to these theories and experiments, some elastic prob-
lems, mainly dislocations and cracks, have been widely
considered [10–15]. Due to the introduction of the phason
field, the elastic equations for QCs are much more com-
plicated than those in classical elasticity theory (CET).
So most authors consider only elastic plane or antiplane
problems for QCs [10–14].

In an earlier paper [15], we proposed a perturbation
method to solve elastic three-dimensional (3D) problems
for icosahedral QCs, regarding the phason field as a per-
turbation to the phonon field. And it works very well. In
this paper, we develop a general method to solve elastic 3D
problems for 1D hexagonal QCs with point groups 6mm,
62h2h, 6̄m2h and 6/mmm, including crack and indentation
problems.

a e-mail: sdwxl@263.net

We first develop briefly the general method of solution
by use of Fourier series and Hankel transforms and then
use this for solutions satisfying the boundary conditions
of our problems. First, we solve the problem of a circular
crack in an infinite medium under arbitrary normal load.
Secondly, we solve the problems where a 1D hexagonal
QC of point group 6mm is indented by a rigid punch.
The results obtained in this paper automatically reduce
to those in CET when the phason field is absent.

2 The basic equations and general solutions

According to 1D QC elasticity theory [7], strain- and
stress-displacement relations for 1D hexagonal QCs
with point groups 6mm, 62h2h, 6̄m2h and 6/mmm,
respectively, are

εij = (∂jui + ∂iuj) /2, wij = ∂jwi

σxx = c11∂xux + (c11 − 2c66)∂yuy + c13∂zuz +R1∂zwz

σyy = (c11 − 2c66)∂xux + c11∂yuy + c13∂zuz +R1∂zwz

σzz = c13∂xux + c13∂yuy + c33∂zuz +R2∂zwz

σyz = σzy = c44(∂yuz + ∂zuy) +R3∂ywz

σzx = σxz = c44(∂xuz + ∂zux) + R3∂xwz

σxy = σyx = c66(∂xuy + ∂yux)
Hzz = R1(∂xux + ∂yuy) +R2∂zuz +K1∂zwz

Hzx = R3(∂xuz + ∂zux) +K2∂xwz

Hzy = R3(∂yuz + ∂zuy) +K2∂ywz . (1)



40 The European Physical Journal B

The equilibrium equations in terms of displacements, in
the absence of body forces, are

(
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2
x + c66∂

2
y + c44∂

2
z

)
ux + (c11 − c66) ∂x∂yuy
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(c11 − c66) ∂x∂yux +
(
c66∂

2
x + c11∂

2
y + c44∂

2
z

)
uy

+ (c13 + c44) ∂y∂zuz + (R1 +R3) ∂y∂zwz = 0

(c13+c44) (∂x∂zux+∂y∂zuy)+
(
c44∂

2
x + c44∂

2
y + c33∂

2
z

)
uz

+
[
R3

(
∂2
x + ∂2

y

)
+R2∂

2
z

]
wz = 0

(R1+R3) (∂x∂zux + ∂y∂zuy)+
[
R3

(
∂2
x + ∂2

y

)
+R2∂

2
z

]
uz
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[
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(
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]
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where the z-axis is assumed to be the quasiperiodic axis,
and the xy-plane the periodic plane of the QC, ui, wi
are phonon and phason displacements in the physical and
perpendicular spaces, respectively, σij and εij are phonon
stresses and strains, Hij and wij are the phason stresses
and strains, c11, c13, c33, c44, c66, K1, K2 the elastic con-
stants corresponding to the phonon and phason fields, and
R1, R2, R3 the elastic constants of phonon-phason cou-
pling. We should keep in mind that the subscripts i, j for
Hij , wij can not be exchanged according to their mean-
ings [6]. It is very important for us to write the boundary
conditions correctly.

We find that equation (2), in cylindrical polar coordi-
nates, can be satisfied by (one can directly verify it)

ur = ∂r (F1 + F2 + F3)− 1/r∂θF4,

uθ = 1/r∂θ (F1 + F2 + F3) + ∂rF4

uz = ∂z (m1F1 +m2F2 +m3F3) ,

wz = ∂z (l1F1 + l2F2 + l3F3) (3)

where the possible functions Fi are the solutions of

(
∂2
r + 1/r∂r + 1/r2∂2

θ + γ2
i ∂

2
z

)
Fi = 0, i = 1, 2, 3, 4

(4)

where the values of mi , li and γi are related by the fol-

lowing expressions:

c44 + (c13 + c44)mi + (R1 + R3) li
c11

=

c33mi +R2li
c13 + c44 + c44mi +R3li

=
R2mi +K1li

R1 +R3 +R3mi +K2li
= γ2

i , i = 1, 2, 3;

c44/c66 = γ2
4 . (5)

Note that we use γ2
i in place of γi for convenience as in [16],

and the expressions (3–5) can reduce to those obtained by
Fabricant [16] and Elliott [17] for aeolotropic hexagonal
crystals when the phason field is absent. Now expanding
Fi into Fourier series, we have

Fi = a
(0)
i (r, z) +

∞∑
n=i

[
a

(n)
i (r, z) cos nθ + b

(n)
i (r, z) sin nθ

]
.

(6)

The substitution of (6) into (4) yields

(
∂2
r + 1/r∂r − n2/r2 + γ2

i ∂
2
z

)
a

(n)
i = 0, n = 0, 1, 2, ...(

∂2
r + 1/r∂r − n2/r2 + γ2

i ∂
2
z

)
b
(n)
i = 0, n = 1, 2, 3, ...

(7)

After the Hankel transformation to equation (7), their so-
lutions can be expressed as

a
(n)
i (r, z) =

∫ ∞
0

ξ
[
A

(n)
i (ξ) exp(−ξz/γi)

+C(n)
i (ξ) exp(ξz/γi)

]
Jn(ξr)dξ n = 0, 1, 2, ...

b
(n)
i (r, z) =

∫ ∞
0

ξ
[
B

(n)
i (ξ) exp(−ξz/γi)

+D(n)
i (ξ) exp(ξz/γi)

]
Jn(ξr)dξ. n = 1, 2, 3, ...

(8)

where A(n)
i (ξ), B(n)

i (ξ), C(n)
i (ξ) and D(n)

i (ξ) are arbitrary
functions of ξ.
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Thus the stress components are given by

σrr =
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2
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(
γ2
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)
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σrθ = σθr = 2c66

(
1/r∂r∂θ − 1/r2∂θ

)
(F1 + F2 + F3)

+ c66

(
∂2
r − 1/r∂r − 1/r2∂2

θ

)
F4

σθz = σzθ = c441/r∂θ∂z [(m1 + 1)F1 + (m2 + 1)F2

+ (m3 + 1)F3] + c44∂r∂zF4

+R31/r∂θ∂z (l1F1 + l2F2 + l3F3)

σzr = σrz = c44∂r∂z [(m1 + 1)F1 + (m2 + 1)F2

+ (m3 + 1)F3]− c441/r∂θ∂zF4

+R3∂r∂z (l1F1 + l2F2 + l3F3)

Hzz = −R1∂
2
z

(
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2
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Hzr = R3∂r∂z [(m1 + 1)F1 + (M2 + 1)F2 + (m3 + 1)F3]
−R31/r∂θ∂zF4 +K2∂r∂z (l1F1 + l2F2 + l3F3)

Hzθ = R31/r∂θ∂z [(m1 + 1)F1 + (m2 + 1)F2

+ (m3 + 1)F3] +R3∂r∂zF4

+K21/r∂θ∂z (l1F1 + l2F2 + l3F3) (9)

where Fi are expressed by (6) and (8).

3 The effect of a crack
in an 1D hexagonal QC

As an application of the above theory, we consider an in-
finite 1D hexagonal QC of point group 6mm weakened by
a flat circular crack with radius a in the plane z = 0, with
arbitrary loads applied normal to the crack faces. It is ob-
vious that we consider only the half-space z ≥ 0. Then our
boundary conditions in the plane z = 0 may be written as

σzz = p(r, θ), Hzz = q(r, θ) 0 < r < a

uz = 0, wz = 0, r > a

σzr = 0, σzθ = 0, r ≥ 0 (10)

and the boundary condition at infinity is

σij → 0, Hij → 0,
√
r2 + z2 →∞. (11)

As a result of (11), in equation (8) we have C(n)
i (ξ) =

D
(n)
i (ξ) = 0. First we assume the load distribution is an

even function of θ. Hence, the loading function p(r, θ) and
q(r, θ) will be expanded in Fourier cosine series as follows

p(r, θ) =
∞∑
n=0

fn(r) cos nθ, q(r, θ) =
∞∑
n=0

gn(r) cos nθ

(12)

in which the Fourier coefficients are determined from

f0(r) =
1
π

∫ π

0

p(r, θ)dθ, fn(r) =
2
π

∫ π

0

p(r, θ) cos nθdθ

g0(r) =
1
π

∫ π

0

q(r, θ)dθ, gn(r) =
2
π

∫ π

0

q(r, θ) cos nθdθ

n = 1, 2, 3, ... (13)

Therefore, it follows from (6) and (8) that

Fi =
∞∑
n=0

[∫ ∞
0

ξA
(n)
i exp (−ξz/γi)Jn(ξr)dξ

]
cos nθ,

i = 1, 2, 3, 4. (14)

From σzθ = 0 for r ≥ 0 we have A
(n)
4 (ξ) = 0, n =

0, 1, 2, 3... And from σzr = 0 for r ≥ 0 we get

A
(n)
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1
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A

(n)
2

]
× γ3
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It follows from the rest of the boundary conditions (10)
that
∫∞

0
ξ3A

(n)
1 (ξ)Jn(ξr)dξ =

(c2fn(r) − c4gn(r)) / (c2c3 − c1c4) 0 < r < a∫∞
0
ξ2A

(n)
1 (ξ)Jn(ξr)dξ = 0 r > a

(16)


∫∞

0
ξ3A

(n)
2 Jn(ξr)dξ =

(c1fn(r) − c3gn(r)) / (c1c4 − c2c3) 0 < r < a∫∞
0
ξ2A

(n)
2 (ξ)Jn(ξr)dξ = 0 r > a

(17)
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with

ci =
R2mi +K1li −R1γ

2
i

γ2
i

−
[R3li + c44(1 +mi)]

[
R2m3 +K1l3 −R1γ

2
3

]
γiγ3 [R3l3 + c44(1 +m3)]

, i=1, 2

cj+2 =
c33mj +R2lj − c13γ

2
j

γ2
j

−
[R3lj + c44(1 +mj)]

[
c33m3 +R2l3 − c13γ

2
3

]
γjγ3 [R3l3 + c44(1 +m3)]

, j=1, 2.

According to the theory of dual integral equations [18,19],
we get from equations (16) and (17) that

A
(n)
1 (ξ) =

√
2
π

ξ−3/2

c2c3 − c1c4

×
∫ a

0

Jn+1/2(ξη)η−n+1/2 dη

×
∫ n

0

rn+1 (c2fn(r) − c4gn(r))

(η2 − r2)1/2
dr

A
(n)
2 (ξ) =

√
2
π

ξ−3/2

c1c4 − c2c3

×
∫ a

0

Jn+1/2(ξη)η−n+1/2 dη

×
∫ n

0

rn+1 (c1fn(r) − c3gn(r))

(η2 − r2)1/2
dr.

Thus the solutions Fi (14) satisfying the boundary condi-
tions (10) and (11) are found. Substituting the expressions
of Fi into equations (3) and (9) we obtain the elastic fields
of the whole QC. Because they are elementary, but very
tedious, we omit them.

When the load distribution is an odd function of θ,
the same procedure can be applied by changing the cosine
functions into the sine functions in equations (12). The
resulting Fi formulae are the same as (14) except that
cos nθ is replaced by sin nθ. The superposition of the two
results for Fi accounts for symmetrical loadings that are
both even and odd in θ.

4 General solutions for indentation problems

If the problem of interest is independent of the variable θ,
equations (4) read(

∂2
r + 1/r∂r + γ2

i ∂
2
z

)
Fi = 0, i = 1, 2, 3, 4. (18)

By means of Hankel transform, it is easy to find that the
solutions of equation (18) can be expressed as

Fi(r, z) =
∫ ∞

0

ξGi(ξ, z)J0(ξr)dξ, i = 1, 2, 3, 4 (19)

where

Gi(ξ, z) = Ai(ξ) exp(−ξz/γi) +Bi(ξ) exp(ξz/γi)

where Ai(ξ) and Bi(ξ) are arbitrary functions of ξ.
Using the formulae (3) and (9), we have the following

expressions for the displacements and stresses

ur = −
∫ ∞

0

ξ2 (G1 +G2 +G3)J1(ξr)dξ

uθ = −
∫ ∞

0

ξ2G4J1(ξr)dξ

uz =
∫ ∞

0

ξ (l1∂zG1 + l2∂zG2 + l3∂zG3) J0(ξr)dξ

wz =
∫ ∞

0

ξ (m1∂zG1 +m2∂zG2 +m3∂zG3)J0(ξr)dξ

σrr =
3∑
i=1

(
−c11γ

2
i + c13mi +R1li

) ∫ ∞
0

ξ∂2
zGiJ0(ξr)dξ

+ 2c66

3∑
i=1

∫ ∞
0

ξ2GiJ1(ξr)/rdξ

σθθ =
3∑
i=1

(
−c11γ

2
i + c13mi +R1li

) ∫ ∞
0

ξ∂2
zGiJ0(ξr)dξ

+ 2c66

3∑
i=1

∫ ∞
0

ξ3Gi [J0(ξr) − J1(ξr)/(ξr)] dξ

σzz =
3∑
i=1

(
−c13γ

2
i + c33mi +R2li

) ∫ ∞
0

ξ∂2
zGiJ0(ξr)dξ

σrθ = σθr = c66

∫ ∞
0

ξ2G4 [−ξJ0(ξr) + 2J1(ξr)/r] dξ

σzθ = σθz = −c44

∫ ∞
0

ξ2∂zG4J1(ξr)dξ (20)

σzr=σrz=−
3∑
i=1

[c44(1 +mi) +R3li]
∫ ∞

0

ξ2∂zGiJ1(ξr)dξ

Hzz =
3∑
i=1

(
−R1γ

2
i +R2mi +K1li

) ∫ ∞
0

ξ∂2
zGiJ0(ξr)dξ

Hzr = −
3∑
i=1

[R3(1 +mi) +K2li]
∫ ∞

0

ξ2∂zGiJ1(ξr)dξ

Hzθ = −R3

∫ ∞
0

ξ2∂zG4J1(ξr)dξ.

From here we see that the stress components σrθ, σzθ and
displacement component uθ are in general non-zero (ex-
cept in a special case G4 ≡ 0) even though the problem of
interest is independent of θ, which is quite different from
the counterpart in CET. But, when the phason field is ab-
sent, the formulae (20) automatically reduce to those in
CET [17].

As an example of application of the above theory, we
now formulate our boundary values at the free surface
z = 0, which is to be punched. The shape of the punch
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must be axial symmetric, and we assume that it is known
as a function of r. Then over a circle of radius a the punch
will be in contact with the material, and outside that area
the surface will be free. We also assume perfect lubrica-
tion between the punch and the material so that no shear
stresses are set up. It is obvious that we consider only the
half-space z ≥ 0.

Then our boundary conditions in the plane z = 0 are

uz = w(r), wz = 0, 0 ≤ r ≤ a
σzz = 0, Hzz = 0 r > a

σzr = 0, σzθ = 0, r ≥ 0 (21)

and the boundary condition at infinity is

σij → 0, Hij → 0,
√
r2 + z2 →∞ (22)

where w(r) is determined by the shape of the punch. It
follows from (22) that Bi(ξ) = 0 for i = 1, 2, 3, 4. And
from σzθ = 0 for r ≥ 0 we have G4 = 0. σzr = 0 for r ≥ 0
means that

A3 = −
[
R3l1 + c44(1 +m1)

γ1
A1 +

R3l2 + c44(1 +m2)
γ2

A2

]
× γ3

R3l3 + c44(1 +m3)
≡ a1A1 + a2A2. (23)

According to the rest of the boundary conditions (21), we
get


∫∞

0
ξ2A1(ξ)J0(ξr)dξ = −c4w(r)/(c1c4 − c2c3)

0 < r < a∫∞
0
ξ3A1(ξ)J0(ξr)dξ = 0 r > a

(24)


∫∞

0
ξ2A2(ξ)J0(ξr)dξ = c3w(r)/(c1c4 − c2c3)

0 < r < a∫∞
0
ξ3A2(ξ)J0(ξr)dξ = 0 r > a

(25)

with

ci =
li
γi

+
l3
γ3
ai, ci+2 =

mi

γi
+
m3

γ3
ai, i = 1, 2

According to the theory of dual integral equations [18,19],
the solutions of equations (24) and (25) read

A1(ξ) = − c4
c1c4 − c2c3

[
2
πa2

ξ−2 cosaξ

×
∫ 1

0

y
(
1− y2

)−1/2
w(y)dy

+
2
πa
ξ−1

∫ 1

0

y
(
1− y2

)−1/2
dy

×
∫ 1

0

w(yu)u sin aξudu
]

(26)

A2(ξ) =
c3

c1c4 − c2c3

[
2
πa2

ξ−2 cos aξ

×
∫ 1

0

y
(
1− y2

)−1/2
w(y)dy

+
2
πa
ξ−1

∫ 1

0

y
(
1− y2

)−1/2
dy

×
∫ 1

0

w(yu)u sin aξudu
]
. (27)

We will now apply this analysis to a special case, that
is indentation by a circular cylindrical punch. In this
problem we have

[w(r)]z=0 = ε, 0 ≤ r ≤ a

and (26, 27) then give

A1(ξ) = − 2c4ε
π (c1c4 − c2c3) a3

ξ−3 sin aξ

A2(ξ) =
2c3ε

π (c1c4 − c2c3) a3
ξ−3 sin aξ. (28)

From (19) and (20), we can calculate the elastic field of
the whole problem. But we will not give it because of the
limitations of space.

5 Conclusions

A general method for solving elastic 3D problems of 1D
hexagonal QCs with point groups 6mm, 62h2h, 6̄m2h and
6/mmm is developed. We have found the exact solutions
for a material containing a circular crack under arbitrary
normal load. Solutions are also found for problems of in-
dentation of an 1D hexagonal QC by a rigid punch. And
these results reduce automatically to the counterpart in
CET when the phason field is absent.

This work is supported by the National Natural Science Foun-
dation of China.



44 The European Physical Journal B

References

1. D. Levine, P.J. Steinhardt, Phys. Rev. Lett. 53, 2477
(1984).

2. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev.
Lett. 53, 1951 (1984).

3. P. Bak, Phys. Rev. Lett. 54, 1517 (1985).
4. D. Levine, T.C. Lubensky, S. Ostlund et al., Phys. Rev.

Lett. 54, 1520 (1985).
5. J.E.S. Socolar, T.C. Lubensky, P.J. Steinhardt, Phys. Rev.

B 34, 3345 (1986).
6. D.H. Ding, W.G. Yang, C.Z. Hu, R.H. Wang, Phys. Rev.

B 48, 7003 (1993).
7. R.H. Wang, W.G. Yang, C.Z. Hu, D.H. Ding, J. Phys.

Cond. Matt. 9, 2411 (1997).
8. M.X. Dai, K. Urban, Phil. Mag. Lett. 67, 67 (1993).
9. P. Ebert, M. Fenerbacher, N. Tamura, M. Wollgarten, K.

Urban, Phys. Rev. Lett. 77, 3827 (1996).

10. P. De, R.A. Pelcovits, Phys. Rev. B 35, 8609 (1987); 36,
9304 (1987).

11. D.H. Ding, R.H. Wang, W.G. Yang, C.Z. Hu, J. Phys.
Cond. Matt. 7, 5423 (1995).

12. W.G. Yang, M. Feuerbacher, N. Tamura et al., Phil. Mag.
A 77, 1481 (1998).

13. T.Y. Fan, X.F. Li, Y.F. Sun, Acta. Physica Sinica (Over-
seas Edition), 8, 288 (1999).

14. T.Y. Fan, Mathematical Theory of Elasticity of Quasicrys-
tals and Its Applications, (Beijing Institute of Technology
Press, Beijing, 1999) (in Chinese).

15. Y.Z. Peng, T.Y. Fan, Chin. Phys. 9, 764 (2000).
16. V.I. Fabrikant, B.S. Rubin, E.N. Karapetian, ASME J.

Appl. Mech. 61, 809 (1994).
17. H.A. Elliott, Proc. Camb. Phil. Soc. 44, 522 (1948).
18. E.C. Titchmarsh, Introduction to the Theory of Fourier

Integrals (Oxford, New York, 1937).
19. I.W. Busbridge, Proc. London Math. Soc. 44, 114 (1938).


